3,355 research outputs found

    Automotive technology status and projections. Volume 2: Assessment report

    Get PDF
    Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated

    Automotive technology status and projections. Volume 1: Executive summary

    Get PDF
    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements

    In Situ Spectroscopic Study of Isomerisation of Light Alkanes over Sulfated Zirconia Catalysts

    No full text
    In situ DRIFT and DR-UV/Vis spectroscopies were performed during n-butane (1 or 5 kPa partial pressure, 358 – 453 K) and n-pentane (1 kPa, 298 – 323 K) isomerization in the presence of two different sulfated zirconia catalysts: a sulfate containing ordered mesoporous zirconia of the MCM-41 structure and a conventional sulfated zirconia catalyst with a tetragonal zirconia bulk structure. After a 100 min induction period, the mesoporous zirconia deactivates slowly during n-butane isomerization at 453 K while an absorption band at 285 nm grows, indicating the formation of unsaturated surface species. The conventional catalyst which is more active and produces the same maximum rate already at 378 K deactivates rapidly and a band grows at 310 nm, indicating the formation of allylic carbocations on the surface. During n-pentane isomerization, both catalysts deactivate rapidly while bands at 285 and 310-320 nm (mesoporous) and 335 nm (conventional) are formed. The spectra clearly show that the surface species on the two catalysts differ, although in principle the same gas phase products are observed, indicating an influence of the underlying wall or tetragonal bulk structure, respectively

    Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    Full text link
    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z=0.381) with the Australia Telescope Compact Array (ATCA). We detect the galaxy in the 5.5 GHz band with an integrated flux density of Fnu = 43 +/- 11 microJy, corresponding to an unobscured star-formation rate (SFR) of about 24 Msun/yr, forty times higher than what was found from optical emission lines. Among the ~30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger time scale.Comment: 6 pages, ApJ, accepted for publicatio

    The Ising model and planar N=4 Yang-Mills

    Get PDF
    The scattering-matrix for planar Yang-Mills with N=4 supersymmetry relies on the assumption that integrability holds to all orders in perturbation theory. In this note we define a map from the spectral variables x^{\pm}, parameterizing the long-range magnon momenta, to couplings in a two-dimensional Ising model. Under this map integrability of planar N=4 Yang-Mills becomes equivalent to the Yang-Baxter equation for the two-dimensional Ising model, and the long-range variables x^{\pm} translate into the entries of the Ising transfer matrices. We explore the Ising correlation length which equals the inverse magnon momentum in the small momentum limit. The critical regime is thus reached for vanishing magnon momentum. We also discuss the meaning of the Kramers-Wannier duality transformation on the gauge theory, together with that of the Ising model critical points.Comment: 24 pages. v2: References added and minor typos correcte

    The S-matrix of the Faddeev-Reshetikhin Model, Diagonalizability and PT Symmetry

    Full text link
    We study the question of diagonalizability of the Hamiltonian for the Faddeev-Reshetikhin (FR) model in the two particle sector. Although the two particle S-matrix element for the FR model, which may be relevant for the quantization of strings on AdS5×S5AdS_{5}\times S^{5}, has been calculated recently using field theoretic methods, we find that the Hamiltonian for the system in this sector is not diagonalizable. We trace the difficulty to the fact that the interaction term in the Hamiltonian violating Lorentz invariance leads to discontinuity conditions (matching conditions) that cannot be satisfied. We determine the most general quartic interaction Hamiltonian that can be diagonalized. This includes the bosonic Thirring model as well as the bosonic chiral Gross-Neveu model which we find share the same S-matrix. We explain this by showing, through a Fierz transformation, that these two models are in fact equivalent. In addition, we find a general quartic interaction Hamiltonian, violating Lorentz invariance, that can be diagonalized with the same two particle S-matrix element as calculated by Klose and Zarembo for the FR model. This family of generalized interaction Hamiltonians is not Hermitian, but is PTPT symmetric. We show that the wave functions for this system are also PTPT symmetric. Thus, the theory is in a PTPT unbroken phase which guarantees the reality of the energy spectrum as well as the unitarity of the S-matrix.Comment: 32 pages, 1 figure; references added, version published in JHE
    corecore